Comparison of formation behavior of Ba₂NaNb₅O₁₅ in air and molten NaCl salt

JIONG XU, LI-HUI ZHU School of Materials Science and Engineering, Shanghai University, Shanghai 200072, People's Republic of China

QING-WEI HUANG, HUI GU

The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China E-mail: huangqw@mail.sic.ac.cn

The crystal growth of barium sodium niobate, $Ba_2NaNb_5O_{15}$ (BNN), and its electrical properties have been elaborately investigated because of the immense importance in many technological applications such as electro-optic, piezoelectric, and nonlinear optical devices [1-6]. However, its application is limited due to high cost and difficulty in fabrication. In contrast, BNN ceramics are superior because they can be made into larger and more complex parts. In order to fabricate BNN ceramics with high density and uniform microstructure, the preparation of BNN powders with high sintering activity is important and therefore it is necessary to understand the formation behavior of BNN phase. In this work, conventional mixed oxides (CMO) and molten salt synthesis (MSS) were chosen to synthesize BNN powders. Phase assemblages during the formation of BNN were investigated in detail.

High purity powders of BaCO₃, Na₂CO₃, Nb₂O₅, and NaCl were used as starting materials. BaCO₃, Na₂CO₃, and Nb₂O₅ according to the formula of Ba₂NaNb₅O₁₅ were first mixed in alcohol for 3 hr. Then one part of the mixture was hand-ground with NaCI in the weight ratio of 1:2 in ethanol. The dried powders with or without NaCI were placed in covered aluminum crucibles and calcined at 700–100 °C for 3 hr. Afterward, the synthesized products were washed with hot de-ionized water until no chloride ions were detected. For comparison, BaCO₃ and Nb₂O₅ were mixed according to the composition of BaNb₂O₆ and then NaCI was added, calcined, and washed according to the above-mentioned process.

The phase analysis of the synthesized powders was performed on a Guinier–Hägg camera by means of powder diffraction using Cu K_{α} radiation as the radiation source ($\lambda = 1.5405981$ Å) and silicon as the internal standard. The negatives obtained were evaluated with a computerized scanner system [7].

The XRD patterns of the synthesized products by CMO at 700–1100 °C for 3 hr are shown in Fig. 1. The powder by CMO at 700 °C is composed of unreacted Nb₂O₅, BaCO₃, newly-formed Na₂Nb₄O₁₁ and Na₂Nb₈O₂₁. When the temperature increases to 800 °C, Na₂Nb₈O₂₁ increases owing to the further reaction of Na₂Nb₄O₁₁ and Nb₂O₅. In addition, Ba₅Nb₄O₁₅ phase occurs at the expense of BaCO₃ and Nb₂O₅. At 900 °C, Nb₂O₅, BaCO₃, and Na₂Nb₄O₁₁ disap-

0022–2461 © 2004 Kluwer Academic Publishers

pear, while BaNb₂O₆, NaNbO₃, and Ba₂NaNb₅O₁₅ form. Subsequently, Ba₂NaNb₅O₁₅ gradually increases with the increase of calcination temperature, accompanied by the decrease of Na₂Nb₈O₂₁, BaNb₂O₆, and NaNbO₃. At last, single-phase Ba₂NaNb₅O₁₅ is obtained at 1100 °C. The reaction processes of BaCO₃, NaCO₃ and Nb₂O₅ in air can be described as follows:

$$Na_{2}CO_{3} + 2Nb_{2}O_{5} \xrightarrow{<700^{\circ}C} Na_{2}Nb_{4}O_{11} + CO_{2} \uparrow$$
(1)

$$Na_2Nb_4O_{11} + 2Nb_2O_5 \xrightarrow{600-800\,^{\circ}C} Na_2Nb_8O_{21}$$
(2)
700-800\,^{\circ}C

$$5BaCO_3 + 2Nb_2O_5 \xrightarrow{\text{ros}} Ba_5Nb_4O_{15} + 5CO_2 \uparrow$$
(3)

$$15BaCO_{3} + 2Na_{2}Nb_{8}O_{21}$$

$$\xrightarrow{800-900 \,^{\circ}C} 3Ba_{5}Nb_{4}O_{15} + 4NaNbO_{3} + 15CO_{2} \uparrow \quad (4)$$

$$Na_{2}Nb_{8}O_{21} + Ba_{5}Nb_{4}O_{15} \xrightarrow{900-1100 \,^{\circ}C} 2Ba_{2}NaNb_{5}O_{15}$$

 $+ BaNb_2O_6$ (5)

$$2BaNb_2O_6 + NaNbO_3 \xrightarrow{900-1100 \,^{\circ}C} Ba_2NaNb_5O_{15} \quad (6)$$

As seen above, at low temperatures (<700 °C), Na₂CO₃ reacts with Nb₂O₅ to form Na₂Nb₄O₁₁, which further reacts with Nb₂O₅ to form Na₂Nb₈O₂₁ phase at 600-800 °C. The newly synthesized Na₂Nb₈O₂₁ reacts with BaCO₃ to form Ba₅Nb₄O₁₅ and NaNbO₃ at 900 °C (reaction (4)), while the remnant Nb_2O_5 also reacts with BaCO₃ to form Ba₅Nb₄O₁₅ at 800 °C. At the same time, further reaction between the remaining Na₂Nb₈O₂₁ and Ba₅Nb₄O₁₅ results in the formation of BaNb₂O₆ and Ba₂NaNb₅O₁₅ at 900 °C. This newly developed BaNb₂O₆ reacts with NaNbO₃ from reaction (4) to form Ba₂NaNb₅O₁₅ at temperatures above 1000 °C. Therefore, single phase Ba₂NaNb₅O₁₅ is synthesized at 1100 °C. Huang investigated the formation behavior of Sr_{0.4}Ba_{0.6}Nb₂O₆ and found that Ba₅Nb₄O₁₅ occurs at 700 °C [8]. However, in this investigation Ba₅Nb₄O₁₅ begins to form at 800 °C during the formation of $Ba_2NaNb_5O_{15}$, which probably results from the preferred reaction between Nb₂O₅ and

			8 8	8				1100°C			
	88	<mark>8</mark> 8	88	Ă	8	8	8	8	88	88	
	88		8	8				1000°C			
	46	88	Å 75 785		8	8	8	785	88	88	
	⁸ / ₄₈ 8 8 7 ⁵ / ₈ ⁵ 8							_900°C			
	40 /4	48	л́МҚЛ	6	4	8	5	78	48	845	
1.111.1.10	<u>,</u>						800°C				
	4 l	2 4	4 ³³	41	4	4	5	15	4	45	
	2 ¹ .					700°C					
		22	1 3132	<u>2</u> 31	111	-	2	11	11 12		
<u>ب</u> 20		25	30	<u> </u>	35		40		45	 50	
					20 / °						

1,BaCO₃; 2,Nb₂O₅; 3,Na₂Nb₄O₁₁; 4,Na₂Nb₈O₂₁; 5,Ba₅Nb₄O₁₅; 6,NaNbO₃; 7,BaNb₂O₆; 8,Ba₂NaNb₅O₁₅

Figure 1 XRD patterns of the synthesized products by CMO calcined at 700–1100 $^{\circ}$ C for 3 hr.

 Na_2CO_3 to form niobium-rich phases $Na_2Nb_4O_{11}$ and $Na_2Nb_8O_{21}$.

The XRD patterns of the synthesized products by MSS at 700–1100 °C are shown in Fig. 2. The synthesized product at 700 $^\circ C$ is composed of BaNb₂O₆ and NaNbO₃. It shows that both BaNb₂O₆ (formed by the reaction of BaCO₃ and Nb₂O₅) and NaNbO₃ (formed by the reaction of Na₂CO₃ and Nb₂O₅) occur at 700 °C with the aid of NaCl, indicating the reaction process in MSS is quite different from CMO. Ba₂NaNb₅O₁₅ begins to form at 800 °C in MSS, which is lower than for CMO. When $BaNb_2O_6$ and $NaNbO_3$ coexist in molten NaCl salt, two possible reactions can occur. One is that Ba₂NaNb₅O₁₅ directly develops from newly synthesized BaNb₂O₆ and NaNbO₃ according to reaction (6). The other is that Na⁺ in NaCl substitutes for Ba²⁺ in BaNbO₆ to develop Ba₂NaNb₅O₁₅. However, it can be seen from Fig. 2 that with the development of Ba2NaNb5O15, only BaNb2O6 phase decreases and disappears, while the content of NaNbO3 is almost invariable from 800-1100 °C. These results indicate that the reaction between BaNb₂O₆ and NaNbO₃ to form Ba₂NaNb₅O₁₅ cannot occur in molten NaCl salt. Therefore, Ba₂NaNb₅O₁₅ can only be developed by the substitution of Na⁺ in NaCl for Ba²⁺ in BaNb₂O₆. To verify the reaction, the reaction process of BaCO₃ and Nb₂O₅ in molten NaCl salt was investigated.

Figure 2 XRD patterns of the synthesized products by MSS calcined at 700–1100 $^{\circ}\text{C}$ for 3 hr.

Figure 3 XRD patterns of the synthesized products calcined at 700–900 $^{\circ}$ C using BaCO₃ and Nb₂O₅ as starting materials in molten NaCl salt.

Fig. 3 shows the phase assembly of powders calcined at 700–900 °C using BaCO₃ and Nb₂O₅ as starting materials in molten NaCl salt. It can be seen that BaNb₂O₆ phase forms at 700 °C with the disappearance of BaCO₃ and Nb₂O₅. Single-phase Ba₂NaNb₅O₁₅ is formed at 800 °C, which further proves that Na⁺ ions in NaCl replace Ba²⁺ ions in BaNb₂O₆ to form Ba₂NaNb₅O₁₅. Therefore, the reaction of BaCO₃, NaCO₃, and Nb₂O₅ in NaCl salt can be described as follows:

$$BaCO_3 + Nb_2O_5 \xrightarrow{<700\,^{\circ}C} BaNb_2O_6 + CO_2 \uparrow (7)$$

$$Na_2CO_3 + Nb_2O_5 \xrightarrow{<700^{\circ}C} 2NaNbO_3 + CO_2 \uparrow (8)$$

$$5\text{BaNb}_2\text{O}_6 + 2\text{NaCl} \xrightarrow{>800^{\circ}\text{C}} 2\text{Ba}_2\text{NaNb}_5\text{O}_{15} + \text{BaCl}_2$$
(9)

In conclusion, five intermediate phases, Na₂Nb₄O₁₁, Na₂Nb₈O₂₁, NaNbO₃, Ba₅Nb₄O₁₅, and BaNb₂O₆, occur in CMO using NaCO₃, BaCO₃, and Nb₂O₅ as starting materials and single-phase Ba₂NaNb₅O₁₅ can be synthesized at 1100 °C. In contrast, when the same starting materials are calcined in molten NaCl salt, only NaNbO₃ and BaNb₂O₆ occur. Unfortunately, the final synthesized products consist of NaNbO₃ and Ba₂NaNb₅O₁₅ due to the substitution of Na⁺ in NaCl for Ba²⁺ in BaNb₂O₆. By choosing BaCO₃ and Nb₂O₅ as starting materials, single-phase Ba₂NaNb₅O₁₅ can be successfully synthesized in molten NaCl salt at 800 °C after 3 hr.

Acknowledgment

This research is supported by the National Natural Science Foundation of China (grant no. 50202015 and no. 50101004).

References

- J. E. GEUSIC, H. L. LEVINSTEIN, J. J. RUBIN, S. SINGH and L. G. VAN UITERT, *Appl. Phys. Lett.* 11 (1967) 69.
- 2. S. SINGH, D. A. DRAEGERT and J. E. GEUSIC, *Phys. Rev.* B: Cond. Matt. 2 (1970) 2709.

- 3. L. G. VAN UITERT, J. J. RUBIN and W. A. BONNER, *IEEE J. Quantum Electron.* **4** (1968) 622.
- 4. K. S. RAO and K. H. YOON, J. Mater. Sci. 38 (2003) 391.
- 5. E. A. GIESS, B. A. SCOTT, G. BURNS, D. F. O'KANE and A. SEGMULLER, J. Amer. Ceram. Soc. 52 (1969) 276.
- 6. J. RAVEZ and P. IIAGENMULLER, *Mater. Res. Bull.* **12** (1977) 769.
- 7. K. E. JOHANSSON, T. PALM and P. E. WERNER, *J. Phys. E: Sci. Instrum.* **13** (1980) 1289.
- 8. Q. W. HUANG, P. L. WANG, Y. B. CHENG and D. S. YAN, *Mater. Lett.* 56 (2002) 915.

Received 26 November 2003 and accepted 29 January 2004